等比数列

n項に定数rをかけると第項になる数列等比数列と言う。定数r公比と言う。
漸化式 ()
一般項: ()
n項までの和: (ただし)

注.のときは

初項:,公比:rの等比数列の一般項は、初項aに公比r回かけたものになり、

()

初項:,公比:r ()の等比数列の第n項までの和は、

  ・・・@
両辺に
rをかけると、
・・・A
@−Aより、
,・・・,が消えて、

()

のときには、となってしまうので、

となります。

例.初項
3,公比2の等比数列:3612244896,・・・・・・ の一般項は、
n項までの和は、
6項までの和は、 ()

3
abcが、として、のようになっていて、等比数列をなしているとき、


3
数のまん中の数は、他の2数の相乗平均になっています。このまん中の数bのことを等比中項と言います。


   数学基礎事項TOP   数学TOP   CHALLENGE from the VOID   TOPページに戻る

(C)2005, 2006,2007, 2008 (有)りるらる雑誌「大学への数学」購入Newton e-Learning
inserted by FC2 system