慶大理工数学'08[A4]検討

[A4](解答はこちら) この問題はまともに体当たりするとなかなか大変です。空所補充式だから手抜きをして良いというわけではありませんが、試験場ではうまく立ち回らないと得点的に不利になってしまいます。
垂直二等分線の式、対称点の座標を求める部分については、基本通りにしっかり計算をする必要があります。しかし、それ以降については、空所補充問題であること、
をチェックしていることから考えて、私には、出題者が論理的な思考を要求しているようには思えないのです。最終解答しか聞いていないのだからいい加減な議論でも良い、ということではなく、むしろ積極的に空所補充問題であることの意義を活用して、直観力を見ている問題のように思えます。「必要十分条件は」というような言葉に惑わされないようにして頂きたいと思います。

この問題の市販本の解答は、ロジックのしっかりとしたものになると思います。それは宿命でしょう。しかしながら、市販本のように解いたのでは時間を大幅にムダにするということも頭に入れておいてください。空所補充式では、受験生が試験会場で必要十分条件であることをしっかり証明をしたかどうか、また、きちんと増減表を書いて計算して確かめたか、ということは、全く見てもらえません。解答欄の答が正しいか誤りか、それだけが採点の対象になるのです。
実社会に出て社会の第一線で仕事をするようになったときに、例えば、大災害が起きて一刻も早く救助活動を開始しなければいけない、というときに、その救助の方針や手法が理にかなったものかどうか、証明しなければ活動できない、とか、計算して経済的妥当性を確認する必要がある、などと言っているうちに人命が失われてしまいます。たとえ、いい加減な議論でも、行動の速さが問われるということもあるのです。

この問題のポイントは、
P(1)が尖点だというところにあります。これさえつかめれば、()()()は計算なしに得点することができます。

尖点の存在がポイントになる問題を紹介しておきましょう。難問ですが腕に覚えのある人はじっくり取り組んでみてください。

東大理系
'87[2]
を点にうつす平行移動によって曲線を移動して得られる曲線をCとする。Cと曲線が接するようなabを座標とする点の存在する範囲の概形を図示せよ。
また、この2曲線が接する点以外に共有点を持たないようなabの値を求めよ。ただし、2曲線がある点で接するとは、その点で共通の接線を持つことである。

問題文では「範囲の概形」となっていますが、尖点をもつ曲線になります。尖点を境にして放物線:の位置関係が変わります(おもしろいので、いろいろ図に描いて確かめてみてください)。また、両曲線が接点以外に共有点を持たないとき、は概形を描いた曲線の尖点になっています。実は、このとき、両曲線は非常に微妙な接し方をしています。


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005, 2006,2007, 2008 (有)りるらるNewton e-Learning
 雑誌「大学への数学」購入
inserted by FC2 system