京大理系数学'07前期甲[6]検討

[6](解答はこちら) 基本的な回転体の求積問題です。曲線を回転してできる回転体の内側が円錐状にくりぬけるので、曲線を回転してできる回転体の体積から円錐の体積を引けば答えが出ます。
解答では、微分計算も大したことはないので、微分して増減を調べていますが、わかりやすくするためです。回転体の形状さえつかめればよいので、積分範囲、何が外に来て内に来るか、という情報が得られればよいのです。問題によっては、微分計算が大変なものもあるので、ムダな時間を使わないように注意してください。

こうした問題では、計算ミスが命取りになります。入試の採点でも、京都大学の多忙な先生が、部分積分の途中の計算過程まで追ってくれるとはとても思えません。
という定積分が出てきますが、部分積分を2回行うと、マイナスの個数を勘違いしたり、2で割るのを忘れたりして、計算ミスを誘発しやすいので、
を利用して、以下のような計算をする方が計算ミス対策としては良いかも知れません。
とすると、

これより、
 (C:積分定数)
となるので、
労力は大して変わりませんが、計算ミスのリスクは減ると思います。


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005, 2006,2007, 2008 (有)りるらるNewton e-Learning
 雑誌「大学への数学」購入
inserted by FC2 system