京大理系数学'08前期甲[1]検討

[1](解答はこちら) 素直な受験生は、この問題を、のグラフと直線の位置関係から考えると思います。
は単調増加では全実数をとります。であれば、単調減少もしくは定数値をとると、は必ず交点をもってしまうので、
のときは、が接するところを求めるために、として、
のとき、y座標は、
直線よりも上を通過すれば、と共有点をもたないから、

というようにしてくれば、試験会場でも充分に実用的です。
ですが、入試問題は問題文に書かれているとおりに考えなければいけないというものではありません。別の角度から眺めることにより、難問が平凡な問題に変わってしまう、ということはよくあることです。

「定数の分離」という受験技巧がありますが、
定数だけ=xを含む式 ・・・()
という形にすると問題を捉えやすくなるのです(微分法の方程式への応用(2)を参照)
そこで、解答では、
を連立して、
()の形を作るために、定数qを分離して、
として、関数を考えました。
のグラフを描き、x軸に平行な直線qの値によってどの辺を通るか、ということを考えれば、の共有点について調べることができます。
「定数の分離」は応用範囲の広い技巧なので、すぐに思いつけるようにしておいてください。


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005, 2006,2007, 2008 (有)りるらるNewton e-Learning
 雑誌「大学への数学」購入
inserted by FC2 system