京大理系数学'13[2]

N2以上の自然数とし、 ()を次の性質(i)(ii)をみたす数列とする。
(i)
(ii) に対して、
が偶数のときが奇数のとき
このときどのような自然数Mに対しても
が成り立つことを示せ。

解答 こうしたイメージのつかみにくい問題では、nNに文字を入れて具体的に調べるようにしましょう。本問は、カラクリがつかめてしまえば、大したことはありません。
のとき、,以後、に対してです。
のとき、,以後、に対してです。
のとき、,以後、に対してです。
のとき、,以後、に対してです。
のとき、,以後、に対してです。
これくらい調べれば、数列のカラクリがつかめます。
Nに対して、数列は、はじめの方が異なるだけで、最後の方は同じになります。特に奇数・偶数の並び方は、であれば、だけが偶数で、それ以外は奇数です。
そこで、まず、各
Nに対して、数列nを用いて表してみます。最初にとなるnは、上記からの場合を除いて、のときです。
Nに対して、各項は、最初の方が自然数で、途中から0になるので、が最大になるのは、のときです。
答案は以下のようになるでしょう。

のとき、は奇数なので、,以後、に対して

どのような自然数Mに対してもより与不等式は成立する。
のとき、は奇数なので、
は偶数なので、
以後、について、と仮定すると、となるのは、,つまり、のときで、このとき、は奇数なので、
従って、帰納的に、を満たす
nについて、 () (数学的帰納法を参照)
特に、,よって、を満たすnについて、
注.つまり、数列は、最初の
2項が、となり、
以降は、,・・・,
31 ()15 ()7 ()3 ()1 ()00,・・・ となっているわけです。

以上より、のとき、どのような自然数
Mに対しても、
 (とおいた)
 (等比数列を参照)
よって、N2以上の自然数とするとき、どのような自然数Mに対しても、が成り立つ。

  京大理系数学TOP  数学TOP  TOPページに戻る
各問題の著作権は
出題大学に属します。

©2005-2023
(有)りるらる
苦学楽学塾 随時入会受付中!
理系大学受験ネット塾苦学楽学塾
(ご案内はこちら)ご入会は、
まず、こちらまでメール
お送りください。
inserted by FC2 system