東工大数学'08前期[2]検討

[2](解答はこちら) ぱっと見た目に難問のように見えますが、ガウスの記号で用いる考え方:
nを整数,xを実数として、のとき、 ・・・()
と同様に、この問題のについても、
のとき、
として考えれば、道が開けそうな気がします。ですが、不等式を導いて、はさみうちしようとすると、のときにはうまく行くのですが、のときにはうまく行きません。のときには考え方を変える必要が出てきます。ですが、のときとのときで極限が異なる、というのは、東工大の問題ではよくあることなので、2つの場合で頭を切り換えて、ていねいに調べていけば切り抜けられるでしょう。
もう一つ、この問題でいやらしいのは、「収束するような実数
cの最大値」という聞き方です。以上では収束せず、なら収束する、というように、解答の書き方を工夫する必要があります。

ガウスの記号に関するおもしろい問題を
1つ紹介しておきましょう。ゆっくりと考えてみてください。お茶の水女子大理学部'94年の問題です。
とする。ただし、xのガウス記号でxを超えない最大の整数である。このとき、次の問いに答えよ。
(1) のグラフを描け。
(2) 数直線上で、動点Pから出発して、,・・・,,・・・ という関係で移動を繰り返すとき、以下の問いに答えよ。
(a) のとき、の値を求めよ。
(b) 動点Pの座標,・・・に対し、のとき、が成り立つことを、数学的帰納法で証明せよ。
(c) 動点Pが、異なる2点間を往復運動している場合、その2点を求めよ。
(2)(b)は、(1)のグラフや直線の式を使わずに、の記号を使ったまま、上記の()を使って解答を書いてみてください。


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005, 2006,2007, 2008 (有)りるらるNewton e-Learning
 雑誌「大学への数学」購入
inserted by FC2 system