東工大数学'08前期[4]検討

[4](解答はこちら) 以前は、東工大は2次曲線をよく取り上げていた(前期では‘96[2]'97[1]'98[4]'02[2])ように思いますが、最近ちょっとご無沙汰でした。
この問題は楕円として難問というわけではありませんが、問題文を読んでいろいろなアプローチが考えられるので、どのアプローチで行くか悩むかも知れません。
2次曲線の問題によっては、対応を誤ると泥沼にはまることになるので、解答方針の選択には神経を使うところです。
この問題でも、回転変換の行列を考えるか、図形的に処理するか、垂直
2等分線を考えるか、いろいろ考えられます。ですが、解法を悩んでいるばかりでは先に進むことができません。とにかく、計算用紙や問題冊子のすみでちょっと計算を始めてみることです。
解答では、反時計回りに角
q 回転することを表す行列を用いて考えましたが、他の方法で解答しても時間的には大差ありません。悩んでいる時間の方がもったいないのです。受験生ごとにクセがあって、得意なアプローチ、得意な解法は異なるので、どの解法が良いのか一概に言うことはできないのです。「2次曲線の問題は○○○で行け」、などと書かれている参考書があるのだとしたら、自分の感性にフィットしている参考書を探さないといけません(時間的制約の強いセンター試験のような場合には、あらかじめ解法を決めておくべきなので、解法を指定してくれている本の方が良いと思います)。理想を言えば、仮に行き詰まっても他の解法に切り替えられる時間的余裕を作ることができる迅速な計算力を磨くべきだ、ということになると思います。
この問題では、文字が
pqaと出てくるので、楕円の方程式を導くときに、どの文字を消去するのか勘違いしないように注意しましょう。aは定数で、pqが変数なので、pqを消去することになります。

楕円がテーマの問題で、解法をよく考えるべき問題を
1つ紹介しておきます。
阪大理工
'01後期[2]
楕円 () 上に点Pをとる。ただし、Pは第2象限にあるとする。点Pにおける楕円の接線をlとし、原点Oを通りlに平行な直線をmとする。直線mと楕円との交点のうち、第1象限にあるものをAとする。点Pを通りmに垂直な直線がmと交わる点をBとする。また、この楕円の焦点でx座標が正であるものをFとする。点Fと点Pを結ぶ直線がmと交わる点をCとする。次の問いに答えよ。
(1) であることを示せ。
(2) であることを示せ。


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005, 2006,2007, 2008 (有)りるらるNewton e-Learning
 雑誌「大学への数学」購入
inserted by FC2 system