東大理系数学'07前期[6]検討

[6](解答はこちら) この問題の(2)が、ことしの問題の中では最難関であるように、私は感じました。最初からとおくことに気づくか、旺文社全国大学入試問題正解に出ていますが、(1)を利用するときに、 という定積分の形で利用し、 の積分範囲を2つに分けることにより(1)を使う、というのでもない限りは、としてうまく行かない、という時点で、深入りしない方が無難だと思います。
とおくとうまく行かないが、とおくとうまく行く、というのは、関数が、の周辺よりもの周辺の方が変化率が大きく、 となるabを探すよりも、 となるabを探す方がやり易い、というところから来ています。しかし、試験場で自然に思いつけるようなことなのでしょうか?
数値の近似に関する問題は、
'99年前期[6]にも、 を示せ、という問題が出ていました(この問題は、やって行くと、を示すことになります)が、本問の方が難解だと思います。
曲線を接線で近似すればできる、程度の工夫で解決するならともかく、この問題のように、平均的な受験生が素直に取り組むと煮ても焼いても食えないようなことになる問題は、果たして入試問題として適切か、という気がします。こうした問題は、試験会場でさっさと見限る眼力を受験勉強において養うべきだ、などと言っては、あまりに皮肉かも知れません。


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005, 2006,2007, 2008 (有)りるらるNewton e-Learning
 雑誌「大学への数学」購入
inserted by FC2 system