東大理系数学'09前期[3]検討

[3](解答はこちら) 昨年の確率の問題('08年前期[2])もそうですが、東大の確率の問題は、漸化式がからむ場合などを除いて易しいことが多い気がします。東大の出題者がどういう意図でそうしているのかはわかりませんが、東大前期の受験生は、最初に6題をざっと眺めて、確率から始めるのが良いように思います。易しいだけに、勘違いやケアレスや場合分け忘れをやってしまうと、命取りになってしまいます。最初に解答して最後の方で新鮮な気持ちで見直しをする、というのがミス対策になるでしょう。
本問
'09年前期[3]は、玉の入り方を「同じものを含む順列」として考えることができれば、解答できます。「同じものを含む順列」は、n個のものがあるとき、そのうちのp個,q個、r個が同じであるとき()の、n個のものの並べ方で、通りあります。本問では、玉が4色あって、5個、あるいは、10個、出てきた順に並べるときに、4種類の同じものが(当然1つの種類については複数個ということが起こります)含まれることになります。
を展開したときのの係数になります
(多項定理)。多項定理で文字数を2文字にしたものが二項定理です。を展開したときの ()の係数はです。また、「同じものを含む順列」で種類を2種類にしたものが「組み合わせ」です。異なるn個のものからr個を選ぶ組み合わせ(通り)、というのは、n個のものを、「選ぶ」か「選ばない」かの2種類に分けながら並べる、と、見れば、「同じものを含む順列」ということになります。
単に教科書に載っている公式を棒暗記するのではなく、その奥に潜んでいる意味まで理解した上で、仮に試験場で公式をド忘れしてしまっても、その意味から引き出せるようにしましょう。



TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005,2006,2007,2008,2009
(有)りるらる
CFV21 随時入会受付中!
CFV21ご入会は、まず、
こちらまでメールをお送りください。
 雑誌「大学への数学」購入
inserted by FC2 system