ガウスの定理

ガウスの定理

空間内のある凸な閉曲面Uで囲まれた領域Vで定義され、領域V内の点における値がで与えられる関数があるとします。
領域
Vは、yzで決まる関数,zで決まる関数だとして、
を満たす凸な領域だとします(凹んだところがある場合にはもっと複雑です)
関数
x偏微分(yzを固定して微分)したものを領域Vにおいて体積分します。
は、xを固定して積分するので、
x軸に平行な直線が閉曲面Uと接する点をつないでできる曲線で閉曲面をx座標の小さい側のAと大きい側のBに分けて、面積分を考えると、
ここで、同一のyzに対する曲面AB面積素片x軸正方向の側を向いています。閉曲面Uの曲面A側の部分はx軸負方向の側を向いています。2つの面積分を閉曲面Uの面積分一つにまとめると、
同様な関数を考えて、


ここで、ベクトル値をとる関数を考えると、閉曲面Uの面積素片をとして、
より、
 ・・・@ (divについては、発散を参照)
この公式を、ガウスの定理と言います。

@式左辺の
は、領域V内の各点でベクトルが湧き出したり吸い込まれたりする量を表しています。@式右辺のは、ベクトルが閉曲面Uの各点から外に出て行く量を表しています。
ガウスの定理は、閉曲面
Uで囲まれた領域V内の各点においてベクトルが湧き出したり吸い込まれたりする量を全部合わせると、閉曲面Uを通過して出入りする量になる、ということを意味しています。


   物理基礎事項TOP   物理TOP   CHALLENGE from the VOID   TOPページに戻る

(C)2005, 2006,2007 (有)りるらる雑誌「大学への数学」購入Newton e-Learning
inserted by FC2 system